▎ 摘 要
The crystallization and electrical characterization of the semiconducting polymer poly(3-hexylthiophene) (P3HT) on a single layer graphene sheet is reported. Grazing incidence X-ray diffraction revealed that P3HT crystallizes with a mixture of face-on and edge-on lamellar orientations on graphene compared to mainly edge-on on a silicon substrate. Moreover, whereas ultrathin (10 nm) P3HT films form well oriented face-on and edge-on lamellae, thicker (50 nm) films form a mosaic of lamellae oriented at different angles from the graphene substrate. This mosaic of crystallites with - stacking oriented homogeneously at various angles inside the film favors the creation of a continuous pathway of interconnected crystallites, and results in a strong enhancement in vertical charge transport and charge carrier mobility in the thicker P3HT film. These results provide a better understanding of polythiophene crystallization on graphene, and should help the design of more efficient graphene based organic devices by control of the crystallinity of the semiconducting film.