▎ 摘 要
The magnetic properties of proposed all-carbon graphene-fullerene nanobuds have been investigated through spin-polarized density functional theory. Four structures (A, B, C and D) are proposed in terms of the geometry, and analysis of the formation of new chemical bonds in the nanobuds is conducted. Cases A and B possess magnetic moments of nearly 6 mu(B), originating from unpaired spins due to the chemical bond formation from two next-nearest atoms in graphene. In Cases C and D, the connections of two atoms in different sublattices of graphene cannot generate unpaired spins, resulting in non-magnetic states. The magnetic nanobuds hold great promise for new spintronics and guide the controllable experimental synthesis of desired geometries.