• 文献标题:   Graphene Oxide-Based Nanostructured DNA Sensor
  • 文献类型:   Article
  • 作  者:   BALAJI A, YANG SL, WANG J, ZHANG J
  • 作者关键词:   dna sensor, fluorescent magnetic coreshell nanoparticle, graphene oxide, fret quenching mechanism
  • 出版物名称:   BIOSENSORSBASEL
  • ISSN:  
  • 通讯作者地址:   Univ Western Ontario
  • 被引频次:   4
  • DOI:   10.3390/bios9020074
  • 出版年:   2019

▎ 摘  要

Quick detection of DNA sequence is vital for many fields, especially, early-stage diagnosis. Here, we develop a graphene oxide-based fluorescence quenching sensor to quickly and accurately detect small amounts of a single strand of DNA. In this paper, fluorescent magnetic nanoparticles (FMNPs) modified with target DNA sequence (DNA-t) were bound onto the modified graphene oxide acting as the fluorescence quenching element. FMNPs are made of iron oxide (Fe3O4) core and fluorescent silica (SiO2) shell. The average particle size of FMNPs was 74 +/- 6 nm and the average thickness of the silica shell, estimated from TEM results, was 30 +/- 4 nm. The photoluminescence and magnetic properties of FMNPs have been investigated. Target oligonucleotide (DNA-t) was conjugated onto FMNPs through glutaraldehyde crosslinking. Meanwhile, graphene oxide (GO) nanosheets were produced by a modified Hummers method. A complementary oligonucleotide (DNA-c) was designed to interact with GO. In the presence of GO-modified with DNA-c, the fluorescence intensity of FMNPs modified with DNA-t was quenched through a FRET quenching mechanism. Our study indicates that FMNPs can not only act as a FRET donor, but also enhance the sensor accuracy by magnetically separating the sensing system from free DNA and non-hybridized GO. Results indicate that this sensing system is ideal to detect small amounts of DNA-t with limitation detection at 0.12 mu M.