▎ 摘 要
The Bronsted acidity of graphene oxide (GO) materials has shown promising activity in organic synthesis. However, roles and functionality of Lewis acid sites remain elusive. Herein, we reported a carbocatalytic approach utilizing both Bronsted and Lewis acid sites in GOs as heterogeneous promoters in a series of multicomponent synthesis of triazoloquinazolinone compounds. The GOs possessing the highest degree of oxidation, also having the highest amounts of Lewis acid sites, enable optimal yields (up to 95%) under mild and non-toxic reaction conditions (85 degrees C in EtOH). The results of FT-IR spectroscopy, temperature-programed decomposition mass spectrometry, and X-ray photoelectron spectroscopy identified that the apparent Lewis acidity via basal plane epoxide ring opening, on top of the saturated Bronsted acidic carboxylic groups, is responsible for the enhanced carbocatalytic activities involving Knoevenagel condensation pathway. Recycled GO can be effectively regenerated to reach 97% activity of fresh GO, supporting the recognition of GO as pseudocatalyst in organic synthesis.