▎ 摘 要
Graphene-reinforced copper composites recently have attracted more attention, since they exhibited excellent mechanical properties and could be used widely in many fields. Few-layer graphene (FLG) and copper powder were mixed by ball milling to produce homogeneous composite powders. Then, FLG-reinforced copper composites (FLG/Cu) were fabricated by spark plasma sintering (SPS) using the composite powders with a FLG volume fraction of 2.4 vol%. The effects of the rotating speed and the time of ball milling were analyzed based on the microstructure evolution and properties of the FLG/Cu composites. Obvious strengthening effect of FLG was found for the composites, and the conductance of the composite reaches 70.4% of IACS. The yield strength of the composite produced by ball milling at a speed of 100 r/min for 4 h is 376 MPa, which is 2.5 times higher than that of copper and higher than that of copper composite enhanced by 5 vol% CNTs (360 MPa). The defects produced in FLG with the increase of rotating speed and time could reduce the mechanical and conductive properties of the composites.