• 文献标题:   Sulfur and Nitrogen Co-Doped Graphene Quantum Dots as a Fluorescent Quenching Probe for Highly Sensitive Detection toward Mercury Ions
  • 文献类型:   Article
  • 作  者:   GU SY, HSIEH CT, TSAI YY, GANDOMI YA, YEOM S, KIHM KD, FU CC, JUANG RS
  • 作者关键词:   infraredassisted heating, graphene quantum dot, fluorescence quenching, mercury detection, sulfur doping, nitrogen doping
  • 出版物名称:   ACS APPLIED NANO MATERIALS
  • ISSN:   2574-0970
  • 通讯作者地址:   Yuan Ze Univ
  • 被引频次:   18
  • DOI:   10.1021/acsanm.8b02010
  • 出版年:   2019

▎ 摘  要

Sulfur and nitrogen codoped graphene quantum dots (SN-GQDs) were synthesized through an efficient infrared (IR)-assisted pyrolysis of glucose, urea, and ammonia sulfate at 260 degrees C. These served as a highly selective probe for the sensing of Hg2+ ions in an aqueous solution. The IR technique can also prepare N-doped graphene quantum dots (N-GQDs), which have been compared with SN-GQDs for their fluorescence (FL) quenching sensitivities by Hg2+ ions. The FL intensities of both GQDs show decreasing functions of concentration of Hg2+ ions within the entire concentration ranges of 10 ppb-10 ppm. The sensitivity of SN-GQD is 4.23 times higher than that of N-GQD, based on the calculation of the Stern-Volmer equation. One interband gap structure of SN-GQDs for the detection of mercury ions is proposed. The S doping can coordinate with phenolic groups on the edge of SN-GQDs (i.e., the formation of (CxO)(2)Hg2+) and induce the cutting off or alleviation of photon injection paths, thereby leading to significant FL quenching. This work proves that SN-GQD offers sufficient sensitivity for probing the quality of drinking water to ensure that it contains less than 10 ppb of Hg2+ ions, as per the World Health Organization standard.