• 文献标题:   Graphene nanoribbon tunneling field effect transistors
  • 文献类型:   Article
  • 作  者:   MOHAMADPOUR H, ASGARI A
  • 作者关键词:  
  • 出版物名称:   PHYSICA ELOWDIMENSIONAL SYSTEMS NANOSTRUCTURES
  • ISSN:   1386-9477
  • 通讯作者地址:   Azarbaijan Univ Shahid Madani
  • 被引频次:   21
  • DOI:   10.1016/j.physe.2012.09.021
  • 出版年:   2012

▎ 摘  要

The electron-hole symmetry characteristic of graphene nanoribbons (GNRs) gives rise to the electron (hole) tunneling through valence (conduction) band states. By employing this property we have numerically investigated GNR field effect transistors with p(+)-type source and drain in the presence of a gate voltage-induced n-type channel using the non-equilibrium Green's function formalism. For long channels, the traditional FET-like I-V behavior is achieved, but at short channels, the sub threshold current opens up an oscillatory dependence on the gate voltage with a considerable amount of current of over 10(-6) A. This is the characteristic current behavior of resonant tunneling transistors that exhibit regions of negative differential resistance. The calculated discrete density of states in the channel attributes this behavior to the constructed n-type channel island between p-type source and drain with thin barriers formed by the energy gap. (c) 2012 Elsevier B.V. All rights reserved.