▎ 摘 要
Carbamazepine (CAZ) is one of the persistent pharmaceutical and personal care products (PPCPs) that widely detected in aqueous environments. The presence of CAZ might induce toxic effects onto ecosystems, while the current treatment approach could not effectively decontaminate it. Herein, we designed a novel visible light driven photocatalyst with graphene dispersed and surface plasmon resonance-enhanced Ag3PO4 (DSPR-Ag3PO4) for the high-rate degradation of CAZ, via a one-step hydrothermal method. 5 mg/L CAZ could be degraded entirely in 2 min by DSPR-Ag3PO4. The apparent rate constant of DSPR-Ag3PO4 was 2.66 min(-1), which was 4.3 times higher than that of pristine Ag3PO4. Graphene would promote the electron dispersion and transportation on DSPR-Ag3PO4, while Ag nanoparticles could trigger the effect of SPR to improve the visible light absorption and charge separation. This work has provided a simple approach to improve Ag3PO4-based photocatalyst with rational design, and shed light on the remediation of PPCPs in the environment.