▎ 摘 要
An electronic synapse (e-synapse) based on memristive switching is a promising electronic element that emulates a biological synapse to realize neuromorphic computing. However, the complex resistive switching process it relies on hampers the reproducibility of its performance. Thus, achievement of a reproducible electronic synapse with a high rate of finished products has become a significant challenge in the development of an artificial intelligent circuit. Here, we demonstrate an ultrathin e-synapse having high yield (>95%), minimal performance variation, and extremely low power consumption based on an Al2O3/graphene quantum dots/Al2O3 sandwich structure that was fabricated using atomic layer deposition. The e-synapse showed both high device-to-device and cycle-to-cycle reproducibility with high stability, endurance, and switching uniformity, because the essential synaptic behaviors could be observed. This implementation of an e-synapse with an Al2O3/graphene quantum dots/Al2O3 structure should intensify motivation for engineering e-synapses for neuromorphic computing.