• 文献标题:   A van der Waals density functional theory comparison of metal decorated graphene systems for hydrogen adsorption
  • 文献类型:   Article
  • 作  者:   WONG J, YADAV S, TAM J, SINGH CV
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF APPLIED PHYSICS
  • ISSN:   0021-8979 EI 1089-7550
  • 通讯作者地址:   Univ Toronto
  • 被引频次:   19
  • DOI:   10.1063/1.4882197
  • 出版年:   2014

▎ 摘  要

Previous Density Functional Theory (DFT) studies on metal decorated graphene generally use local density approximation (LDA) or generalized gradient approximation (GGA) functionals which can cause inaccuracies in hydrogen binding energies as they neglect van der Waals (vdW) interactions and are difficult to compare due to their widely varying simulation parameters. We investigated the hydrogen binding ability of several metals with a consistent set of simulations using the GGA functional and incorporated vdW forces through the vdW-DF2 functional. Metal adatom anchoring on graphene and hydrogen adsorption ability for both single and double sided decoration were studied for eight metals (Al, Li, Na, Ca, Cu, Ni, Pd, and Pt). It was found that the vdW correction can have a significant impact on both metal and hydrogen binding energies. The vdW-DF2 functional led to stronger metal adatom and hydrogen binding for light metals in comparison to GGA results, while heavier transition metals displayed the opposite behaviour but still produced stronger hydrogen binding energies than light metals. Nickel was found to be the best balance between hydrogen binding ability for reversible storage and low weight. The effects on hydrogen binding energy and maximum achievable hydrogen gravimetric density were analyzed for Ni-graphene systems with varying metal coverage. Lower metal coverage was found to improve hydrogen binding but decrease hydrogen gravimetric density. The highest achieved Ni-graphene system gravimetric density was 6.12wt. %. (C) 2014 AIP Publishing LLC.