▎ 摘 要
Graphene was prepared by electrochemical reduction of exfoliated graphite oxide at cathodic potentials, and used to fabricate a graphene-modified glassy carbon electrode (GCE) which was applied in a sensor for highly sensitive and selective voltammetric determination of hydroquinone (HQ). Compared to a bare (conventional) GCE, the redox peak current for HQ in pH 5.7 acetate buffer solution is significantly increased, indicating that graphene possesses electrocatalytic activity towards HQ. In addition, the peak-to-peak separation is significantly improved. The modified electrode enables sensing of HQ without interference by catechol or resorcinol. Under optimal conditions, the sensor exhibits excellent performance for detecting HQ with a detection limit of 0.8 mu M, a reproducibility of 2.5% (expressed as the RSD), and a recoveries from 98.4 to 101.2%.