▎ 摘 要
One-dimensional nanostructures (1D) with short ion diffusion distance and fast ion transport path are excellent for lithium-ion batteries (LIBs). However, the nature of layered transition metal dichalcogenides makes it difficult to form 1D nanohybrids. Here, the MoTe2 nanorods with an av-erage diameter of 100-200 nm and length of 1-3 mu m encapsulated by reduced graphene oxide (MoTe2/ rGO) have been fabricated via in-situ reaction of GO coated Mo3O10(C2H10N2) nanowires with Te under Ar/H2 atmosphere. When applied as anode of LIBs, the MoTe2/rGO delivers a high reversible capacity (637 mA h g-1 after 100 cycles at 0.2 A g-1), good rate capability (374 mA h g-1 at 2 A g-1) and excellent stability (360 mA h g-1 after 200 cycles at 0.5 A g-1), which surpasses bare MoTe2 nanorods and bulk MoTe2 crystallite. Furthermore, a lithium-ion full cell constructed by coupling MoTe2/rGO anode and LiCoO2 cathode shows a capacity of 105 mA h g-1 at 0.1 C. The enhanced performance mainly benefits from the ad-vantages of 1D nanostructure, and meanwhile the rGO thin layers are able to improve the conductivity and maintain the structural stability. This work provides a simple pathway for the synthesis of 1D TMDs nanostructures for energy storage and conversion.