• 文献标题:   Electron Transport in Nanoporous Graphene: Probing the Talbot Effect
  • 文献类型:   Article
  • 作  者:   CALOGERO G, PAPIOR NR, KRETZ B, GARCIALEKUE A, FREDERIKSEN T, BRANDBYGE M
  • 作者关键词:   nanoporous graphene, talbot interference, electron transport, scanning probe microscopy, multiscale modeling
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Tech Univ Denmark
  • 被引频次:   9
  • DOI:   10.1021/acs.nanolett.8b04616
  • 出版年:   2019

▎ 摘  要

Electrons in graphene can show diffraction and interference phenomena fully analogous to light thanks to their Dirac-like energy dispersion. However, it is not clear how this optical analogy persists in nanostructured graphene, for example, with pores. Nanoporous graphene (NPG) consisting of linked graphene nanoribbons has recently been fabricated using molecular precursors and bottom-up assembly (Moreno et al. Science 2018, 360, 199). We predict that electrons propagating in NPG exhibit the interference Talbot effect, analogous to photons in coupled waveguides. Our results are obtained by parameter free atomistic calculations of real-sized NPG samples based on seamlessly integrated density functional theory and tight-binding regions. We link the origins of this interference phenomenon to the band structure of the NPG. Most importantly, we demonstrate how the Talbot effect may be detected experimentally using dual-probe scanning tunneling microscopy. Talbot interference of electron waves in NPG or other related materials may open up new opportunities for future quantum electronics, computing, or sensing.