• 文献标题:   Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes
  • 文献类型:   Article
  • 作  者:   LEE HJ, LIM J, CHO SY, KIM H, LEE C, LEE GY, SASIKALA SP, YUN T, CHOI DS, JEONG MS, JUNG HT, HONG S, KIM SO
  • 作者关键词:   unzipping, graphene, nanoribbon, gas sensor, doping
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Korea Adv Inst Sci Technol
  • 被引频次:   2
  • DOI:   10.1021/acsami.9b08876
  • 出版年:   2019

▎ 摘  要

Unzipping carbon nanotubes (CNTs) may offer a valuable route to synthesize graphene nanoribbon (GNR) structures with semiconducting properties. Unfortunately, currently available unzipping methods commonly rely on a random harsh chemical reaction and thereby cause significant degradation of the crystalline structure and electrical properties of GNRs. Herein, crystalline semiconducting GNRs are achieved by a synergistic, judiciously designed two-step unzipping method for N-doped CNTs (NCNTs). NCNTs are effectively unzipped by damage-minimized, dopant-specific electrochemical unzipping and subsequent sonochemical treatment into long ribbon-like nanostructures with crystalline basal planes. Owing to the nanoscale dimension originating from the dense nucleation of the unzipping reaction at highly NCNTs, the resultant GNRs demonstrate semiconducting properties, which can be exploited for chemiresistor-type gas-sensing devices and many other applications.