• 文献标题:   MOF-Like 3D Graphene-Based Catalytic Membrane Fabricated by One-Step Laser Scribing for Robust Water Purification and Green Energy Production
  • 文献类型:   Article
  • 作  者:   HUANG XY, LI LH, ZHAO SF, TONG L, LI Z, PENG ZR, LIN RF, ZHOU L, PENG C, XUE KH, CHEN LJ, CHENG GJ, XIONG Z, YE L
  • 作者关键词:   3d graphene, laser scribing, catalytic membrane, water purification, hydrogen production
  • 出版物名称:   NANOMICRO LETTERS
  • ISSN:   2311-6706 EI 2150-5551
  • 通讯作者地址:  
  • 被引频次:   7
  • DOI:   10.1007/s40820-022-00923-4
  • 出版年:   2022

▎ 摘  要

Increasing both clean water and green energy demands for survival and development are the grand challenges of our age. Here, we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane (3D-GCM) with active metal nanoparticles (AMNs) loading for simultaneously obtaining the water purification and clean energy generation, via a "green" one-step laser scribing technology. The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs, which exhibits high permeated fluxes (over 100 L m(-2) h(-1)) and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving (0.1 bar). After adsorption saturating, the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis, and restores the adsorption capacity well for the next time membrane separation. Most importantly, the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation. Moreover, the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation, realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation. This "green" precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.