• 文献标题:   Physical Expansion of Layered Graphene Oxide Nanosheets by Chemical Vapor Deposition of Metal-Organic Frameworks and their Thermal Conversion into Nitrogen-Doped Porous Carbons for Supercapacitor Applications
  • 文献类型:   Article
  • 作  者:   AMER WA, WANG J, DING B, LI T, ALLAH AE, ZAKARIA MB, HENZIE J, YAMAUCHI Y
  • 作者关键词:   chemical vapor deposition, graphene, metalorganic framework, nitrogendoped carbon, porous carbon
  • 出版物名称:   CHEMSUSCHEM
  • ISSN:   1864-5631 EI 1864-564X
  • 通讯作者地址:   NIMS
  • 被引频次:   2
  • DOI:   10.1002/cssc.201901436 EA AUG 2019
  • 出版年:   2020

▎ 摘  要

Graphene oxide (GO) nanosheets show good electrical conductivity and corrosion resistance in electrochemical devices. However, strong van der Waals attraction between adjacent nanosheets causes GO materials to collapse, reducing the exposed surfaces and limiting electron/ion transport in porous electrodes. GO nanosheets mixed with Zn-5(OH)(8)(NO3)(2) center dot 2 H2O (ZnON) nanoplates create a layered composite structure. Exposing the resultant GO/ZnON to 2-methylimidazole vapor leads to the conversion of ZnON into the zeolitic imidazolate framework ZIF-8. The transformation of ZnON into ZIF-8 leads to a huge physical expansion of the interlayer space between the GO sheets. Annealing the material at high temperature caused the ZIF-8 to be converted into highly porous nitrogen-doped carbon, but the GO nanosheets maintained a large separation and high surface area. The morphology and porous structure of the post-annealing carbon material was sensitive to the initial ratio of ZnON to GO. The optimized sample exhibited several favorable features, including a large surface area, high degree of graphitization, and a high amount of nitrogen doping. Using chemical vapor deposition of metal-organic frameworks to physically expand nanomaterials is a novel method to increase the surface area and porosity of materials. It enabled the synthesis of nanoporous carbon electrodes with high capacitance, good rate capability, and long cyclic stability in supercapacitor devices.