▎ 摘 要
Non-precious metal oxide/carbon hybrid electrocatalysts are of increasing importance for the oxygen reduction reaction (ORR). A synergistic effect is commonly used to explain the superior ORR activity exerted by metal oxide/nanocarbon hybrids, and this effect is attributed to covalently coupled interfaces between the two materials. However, the origin of the high activity, the structure, and the electrocatalytic nature of the interface remain unclear. By combining X-ray photoelectron spectroscopy with synchrotron far-infrared spectroscopy, we resolved the interface structure between spinel manganese oxide nanocrystals and graphene oxide nanoribbons, and the role of this interface in the promoted ORR. Moreover, we demonstrated the excellent ORR activity by a functional synergism of the hybrid constituents through a series of comparative electrochemical experiments.