• 文献标题:   VO2-graphene-integrated hBN-based metasurface for bi-tunable phonon-induced transparency and nearly perfect resonant absorption
  • 文献类型:   Article
  • 作  者:   ERCAGLAR V, HAJIAN H, OZBAY E
  • 作者关键词:   hbn, vo2, graphene, metasurface, phononinduced transparency, absorption
  • 出版物名称:   JOURNAL OF PHYSICS DAPPLIED PHYSICS
  • ISSN:   0022-3727 EI 1361-6463
  • 通讯作者地址:  
  • 被引频次:   13
  • DOI:   10.1088/1361-6463/abecb2
  • 出版年:   2021

▎ 摘  要

A bi-tunable hexagonal boron nitride (hBN)-based metasurface with bi-functional phonon-induced transparency (PIT) and nearly perfect resonant absorption features in the mid-infrared (MIR) range is proposed. The metasurface, that is composed of axially symmetric hBN rings, is separated from a uniform thin vanadium dioxide (VO2) film with a SiO2 spacing layer and is integrated with a top graphene sheet. For the insulating phase of VO2 (i-VO2), PIT with an 80% transmission contrast ratio is observed inside the reststrahlen (RS) band of hBN due to the support of hyperbolic phonon polaritons. A considerably large group delay of 9.5 ps and up to 1.8 THz RIU-1 frequency shift per refractive index unit is also achieved for the i-VO2 case. On the other hand, it is found that for the metallic phase of VO2 (m-VO2), light transmission is prohibited and nearly perfect resonant absorption peaks are appeared inside the RS band of hBN. Finally, by integrating the hBN-based metasurface into the graphene sheet on the top, a tunable PIT-like effect and nearly perfect light absorption is achieved duo to the hybridization of graphene plasmons and hBN phonons. This leads to a modulation depth as high as 87% in the transmission (i-VO2) and 62% in the absorption (m-VO2) responses. Our findings offer a tunable and bi-functional device that is practical for MIR slow-light, sensing, and thermal emission applications.