• 文献标题:   Integration of Graphene Electrodes with 3D Skeletal Muscle Tissue Models
  • 文献类型:   Article
  • 作  者:   KIM Y, PAGANDIAZ G, GAPINSKE L, KIM Y, SUH J, SOLOMON E, HARRIS JF, NAM S, BASHIR R
  • 作者关键词:   3d graphene transfer, biohybrid robot, biological machine, pegda scaffold, skeletal muscle
  • 出版物名称:   ADVANCED HEALTHCARE MATERIALS
  • ISSN:   2192-2640 EI 2192-2659
  • 通讯作者地址:   Univ Illinois
  • 被引频次:   3
  • DOI:   10.1002/adhm.201901137 EA JAN 2020
  • 出版年:   2020

▎ 摘  要

Integration of conductive electrodes with 3D tissue models can have great potential for applications in bioelectronics, drug screening, and implantable devices. As conventional electrodes cannot be easily integrated on 3D, polymeric, and biocompatible substrates, alternatives are highly desirable. Graphene offers significant advantages over conventional electrodes due to its mechanical flexibility and robustness, biocompatibility, and electrical properties. However, the transfer of chemical vapor deposition graphene onto millimeter scale 3D structures is challenging using conventional wet graphene transfer methods with a rigid poly (methyl methacrylate) (PMMA) supportive layer. Here, a biocompatible 3D graphene transfer method onto 3D printed structure using a soft poly ethylene glycol diacrylate (PEGDA) supportive layer to integrate the graphene layer with a 3D engineered ring of skeletal muscle tissue is reported. The use of softer PEGDA supportive layer, with a 10(5) times lower Young's modulus compared to PMMA, results in conformal integration of the graphene with 3D printed pillars and allows electrical stimulation and actuation of the muscle ring with various applied voltages and frequencies. The graphene integration method can be applied to many 3D tissue models and be used as a platform for electrical interfaces to 3D biological tissue system.