▎ 摘 要
Nickel-based materials exhibit great potential in the field of hydrogen evolution reaction (HER), however, the low catalytic active site and poor corrosion resistance still limit further application. Herein, a novel 3D self-supporting electrode of graphene oxide/nickel-cobalt/ carbonized wood (GO/Ni-Co/CW) based on porous carbon is developed. The selfsupporting structure of the electrode effectively prevents the shedding of catalytic materials, while the exposed active sites of the Ni-Co nanosheets ensure excellent catalysis and the decoration of GO further enhances the HER performance. Evidently, GO/Ni-Co/CW requires an overpotential of 52 mV in 0.5 M H2SO4 and 70 mV in 1 M KOH to achieve a current density of 10 mA cm(-2). Furthermore, the introduction of GO greatly improves the stability performance of the electrode due to its corrosion resistance, as found by the catalytic stability performance test. As a new idea, GO decorated Ni-Co nanosheets grown on wood-based porous carbon as electrodes fully combine and exploit the advantages of CW's 3D porous structure, Ni-Co nanosheets' catalytic activity, and GO's corrosion resistance, which provide an effective strategy for novel nickel-based HER electrocatalysts. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.