▎ 摘 要
In this letter we discuss basal-plane hydrogenation of graphene, in the extent of intercoupling between strain and electronic structure. Our first-principles calculations reveal that the atomic structures, binding energies, mechanical and electronic properties of graphene are significantly modified by applying strain. At a biaxial strain of 10%, binding energies of hydrogen on graphene can be improved by 53.89% and 23.56% in the symmetric and antisymmetric phase. In symmetric phase, carbon-hydrogen binding is unstable in compression. In antisymmetric phase, binding of hydrogen atoms reduces the sp(2) characteristic of graphene, which is partially recovered at finite tensile strain.