▎ 摘 要
In this work, the electrocatalytic oxidation of ethanol was studied in acidic media at the wholly elecfrosynthesized nanocomposites: platinum and its alloys (copper and nickel) nanoparticles/reduced graphene oxide on the carbon-ceramic electrode (Pt/rGO/CCE, Pt-Cu/rGO/CCE, and Pt-Ni/rGO/CCE elecfrocatalysts). The elecfrosynthesized nanocomposites were characterized by scanning electron microscopy, X-ray powder diffraction, and energy-dispersive X-ray spectroscopy. Electrocatalytic activities of the Pt/rGO/CCE, Pt-Cu/rGO/CCE and Pt-Ni/rGO/CCE toward ethanol oxidation were investigated via cyclic voltammetric and chronoamperometric techniques in 0.1 M H2SO4 solution containing 0.3 M ethanol. The obtained results show that the Pt-Ni/rGO/CCE was catalytically more active and exhibits better electrocatalytic performance toward ethanol oxidation (ECSA=25.28, Jpf=0.156 mA/cm(2), Jpf/Jpb=1. 12 and E-onset=0.2 V) than Pt-Cu/rGO/CCE (ECSA=19.09, Jpf=0. 108 mA/cm(2), Jpf/Jpb=0.99 and E-onset=0.3 V) and Pt/rGO/CCE (ECSA=28.28, Jpf=0.092 mA/cm(2), Jpf/Jpb=0.55 and E-onset= 0. 35 V). The result of some effective and important investigational factors was studied and optimize conditions were suggested. Based on the obtained data one can be expected that the studied systems are promising systems for ethanol fuel cell applications.