• 文献标题:   Highly Dispersed Ultrafine Pt Nanoparticles on Reduced Graphene Oxide Nanosheets: In Situ Sacrificial Template Synthesis and Superior Electrocatalytic Performance for Methanol Oxidation
  • 文献类型:   Article
  • 作  者:   WU SL, LIU J, TIAN ZF, CAI YY, YE YX, YUAN QL, LIANG CH
  • 作者关键词:   ultrafine pt np, electrocatalyst, in situ sacrificial template, laser ablation in liquid, methanol oxidation
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   61
  • DOI:   10.1021/acsami.5b06153
  • 出版年:   2015

▎ 摘  要

We report a simple and environmentally friendly route to prepare platinum/reduced graphene oxide (Pt/rGO) nanocomposites (NCs) with highly reactive MnOx colloids as reducing agents and sacrificial templates. The colloids are obtained by laser ablation of a metallic Mn target in graphene oxide (GO)containing solution. Structural and morphological investigations of the as-prepared NCs revealed that ultrafine Pt nanoparticles (NPs) with an average size of 1.8 (+/-0.6) rim are uniformly dispersed on the surfaces of rGO nanosheets. Compared with commercial Pt/C catalysts, Pt/rGO NCs with highly electrochemically active surface areas show remarkably improved catalytic activity and durability toward methanol oxidation. All of these superior characteristics can be attributed to the small particle size and uniform distribution of the Pt NPs, as well as the excellent electrical conductivity and stability of the rGO catalyst support. These findings suggest that Pt/rGO electrocatalysts are promising candidate materials for practical use in fuel cells.