▎ 摘 要
We report here a rapid and cost-effective approach to synthesize few-layer reduced graphene oxide (FL-RGO) in graphene oxide solution using EDA as a reducing agent and a cross-linker, and where the resulting FL-RGO was characterized by means of AFM, TEM, XPS, UV-vis, and XRD spectroscopies. A mechanism for forming the FL-RGO via removal of epoxide and hydroxyl groups from GO and stitching of the GO sheets by EDA in a water solution was proposed. FL-RGO was also tested as the electrolyte for a Li+-ion battery and showed advantages with a 346 mAh g(-1) capacity at a charge/discharge current density of 1C even after 60 cycles, which is comparable to the theoretical capacity of the graphite (372 inAh g(-1)).