▎ 摘 要
We report etching-free and iodine-free transfer of highly aligned array of armchair-edge graphene nanoribbons (ACGNRs) and their field-effect transistor (FET) characteristics. They were prepared by on-surface polymerization on Au(788) templates. The ACGNRs were mechanically delaminated and transferred onto insulating substrates with the aid of a nano-porous support layer composed of hydrogen silsesquioxane (HSQ). The key process in the mechanical delamination is the intercalation of octanethiol self-assembled monolayers (SAMs), which penetrate the HSQ layer and intercalate between the ACGNRs and Au(788). After the transfer, the octanethiol SAMs were removed with Piranha solution, enabling the reuse of the Au single crystals. The FETs fabricated with the transferred ACGNR array showed ambipolar behavior when the channel length was as long as 60 nm. Quasi-one-dimensional conductivity was observed, which implies a good alignment of GNRs after the transfer. In contrast, short-channel ACGNR FETs (channel length similar to 20 nm) suffer from a geometry-dependent short-channel effect. This effect is more severe in the FETs with ACGNRs parallel to the channel, which is an ideal geometry, than in ones perpendicular to the channel. Since the I-D-V-D curve is well fitted by the power-law model, the short-channel effect likely stems from the space-charge limited current effect, while the wide charge-transfer region in the GNR channel can be another possible cause for the short-channel effect. These results provide us with important insights into the designing short-channel GNR-FETs with improved performance. Published by AIP Publishing.