▎ 摘 要
A dual-sensitive drug delivery system (DDS) based on graphene oxide (GO) which is simultaneously loaded with proapoptotic peptides and anticancer drugs was rationally designed and fabricated for cancer synergetic therapy. Specifically, a kind of cell apoptosis peptide (KLAKLAK)(2) (KLA) was anchored on the surface of GO via a disulfide bond to obtain GO-SS-KLA. Then, the aromatic anticancer drug doxorubicin (DOX) was loaded on GO through pi-pi conjugation and hydrogen bonding interactions. Finally, bovine serum albumin (BSA) was used to coat the GO carrier to obtain a biological medium-stable GO-based DDS, DOX@GO-SS-KLA/BSA. The results show that KLA and DOX can be released responding to the reductive and pH stimulus inside the cells, respectively, and achieve a synergetic therapy for cancer. Moreover, the results of stability studies show that DOX@GO-SS-KLA/BSA could be stably dispersed in water for more than 8 days and in 10% fetal bovine serum for at least 6 days. The constructed DOX@GO-SS-KLA/BSA exhibits great potential as a drug carrier for co-delivery of various therapeutic agents.