• 文献标题:   microRNAs control of in vivo toxicity from graphene oxide in Caenorhabditis elegans
  • 文献类型:   Article
  • 作  者:   WU QL, ZHAO YL, ZHAO G, WANG DY
  • 作者关键词:   caenorhabditis elegan, graphene oxide, microrna, toxicity, lifespan
  • 出版物名称:   NANOMEDICINENANOTECHNOLOGY BIOLOGY MEDICINE
  • ISSN:   1549-9634 EI 1549-9642
  • 通讯作者地址:   Southeast Univ
  • 被引频次:   37
  • DOI:   10.1016/j.nano.2014.04.005
  • 出版年:   2014

▎ 摘  要

The molecular basis for in vivo graphene oxide (GO) toxicity is still largely unclear. We here used Caenorhabditis elegans to investigate the microRNAs (miRNAs) control of GO toxicity. With the aid of SOLiD sequencing, we identified 23 up-regulated and 8 down-regulated miRNAs in GO-exposed nematodes. Gene ontology and KEGG pathway database analysis implied that these identified miRNAs might be involved in control of many biological processes, and some of them suggest the possible new functions of GO. Functions of the identified miRNAs in regulating the GO toxicity on lifespan were confirmed in the available miRNAs mutants. Moreover, we provide the evidence to raise a hypothesis that GO may reduce lifespan through influencing the functions of insulin/IGF signaling, TOR signaling, and germline signaling pathways controlled by miRNAs. Our results will be helpful for understanding the molecular basis for GO toxicity, and finding clues for useful surface modifications to reduce GO toxicity. From the Clinical Editor: In this study, toxicity of graphene oxide is studied in a Caenorhabditis elegans model via microRNA analysis. The authors report that multiple important pathways are influenced by GO and raise a hypothesis that GO may reduce lifespan through influencing the functions of insulin/IGF signaling, TOR signaling, and germline signaling pathways. (C) 2014 Elsevier Inc. All rights reserved.