▎ 摘 要
The development of highly sensitive and selective enantiomeric platforms towards the rapid screening of active pharmaceutical ingredients (APIs) is nowadays a crucial challenge in several fields related to pharmacology, biomedicine, biotechnology and (bio)sensors. Herein, it is presented a novel, facile and generic methodology focused on exploiting the synergistically and electrocatalytic properties of chiral magnetic-nanobiofluids (mNBFs) with electrochemical enantiobiosensing at a magneto nanocomposite graphene paste electrode (mNC-GPE). The feasibility of this approach has been validated by chirally recognizing tryptophan (TRP) enantiomers as a proof-of-concept. For this aim, a specific chiral mNBF based on an aqueous dispersion of cobalt ferrite loaded with gold nanoparticles carrying a thiolated beta-cyclodextrin (beta-CD-SH/Ati/CoFe2O4-NPs) has been synthesized and used towards the supramolecular discrimination of TRP enantiomers at an advanced graphene-paste transducer via cyclic voltammetry. This strategy, which is the first demonstration of applicability of chiral mNBFs for electrochemical enantiorecognition, opens up new approaches into enantio(bio)sensing.