▎ 摘 要
Li-S batteries, though promising for long-distance electrical vehicles, are still not practically viable mainly due to the short cycling life arising from the polysulfide shuttle. Herein, we demonstrate a Li/polysulfide battery with 3D nitrogen-doped reduced graphene oxide (rGO)/carbon nanotube (CNT) hybrid aerogel as the binder free and self-standing host for liquid polysulfide-containing catholyte. Hetero-dopants of nitrogen and CNT additives are found to significantly improve the electrochemical performances due to the abundant active catholyte/electrolyte interfaces, high rate charge-transfer paths, and spatially uniform depositing/stripping of reactants. The final hybrid aerogel achieves long cycling stability (0.11% capacity fading rate for 400 cycles) and high rate capability (767 mAh/g(sulfar). at 2 C rate) at a high areal sulfur loading weight of similar to 6 mg/cm(2).