▎ 摘 要
DC magnetization of a series of titania nano-composites modified with reduced graphene oxide (rGO) has been investigated. Hysteresis loops observed at room temperature disappeared at low temperatures. At a temperature of about 100 K, a phase transition to the super-ferromagnetic order state was observed, probably due to the linear expansion and self-reorientation of the magnetic moments. Processes associated with magnetic moment reorientation can cause a hysteresis loop to disappear at low temperatures as well as superferromagnetic ordering. It was suggested that the isolated nanoparticle in the nanopore could be used to create a "compass" at a nanometer-sized level that would be many times more sensitive than the conventional one. Measurements of the zero-field cooling and field cooling modes do not exclude the possibility of the coexistence of a superparamagnetic state.