▎ 摘 要
We propose a new graphene field-effect transistor structure with local channel width modulation (modulated channel width, MCW-GFET). The channel has notches at the source side under the gate to increase the electric field. We simulate its electrical properties for the first time using the Monte Carlo particle method. Compared with that in the conventional GFET, the local mean velocity in the MCW-GFET can be twice higher, leading to a 30% shorter transit time and a 50% shorter local transit time near the source region without changing the threshold voltage of the FET. Therefore, developing GFETs with various structural designs seems promising for high-performance devices. (C) 2012 The Japan Society of Applied Physics