• 文献标题:   Charge transport and electron-hole asymmetry in low-mobility graphene/hexagonal boron nitride heterostructures
  • 文献类型:   Article
  • 作  者:   LI JY, LIN L, HUANG GY, KANG N, ZHANG JC, PENG HL, LIU ZF, XU HQ
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF APPLIED PHYSICS
  • ISSN:   0021-8979 EI 1089-7550
  • 通讯作者地址:   Peking Univ
  • 被引频次:   1
  • DOI:   10.1063/1.5009742
  • 出版年:   2018

▎ 摘  要

Graphene/hexagonal boron nitride (G/h-BN) heterostructures offer an excellent platform for developing nanoelectronic devices and for exploring correlated states in graphene under modulation by a periodic superlattice potential. Here, we report on transport measurements of nearly 0 degrees-twisted G/h-BN heterostructures. The heterostructures investigated are prepared by dry transfer and thermally annealing processes and are in the low mobility regime (approximately 3000 cm(2) V-1 s(-1) at 1.9 K). The replica Dirac spectra and Hofstadter butterfly spectra are observed on the hole transport side, but not on the electron transport side, of the heterostructures. We associate the observed electron-hole asymmetry with the presence of a large difference between the opened gaps in the conduction and valence bands and a strong enhancement in the interband contribution to the conductivity on the electron transport side in the low-mobility G/h-BN heterostructures. We also show that the gaps opened at the central Dirac point and the hole-branch secondary Dirac point are large, suggesting the presence of strong graphene-substrate interaction and electron-electron interaction in our G/h-BN heterostructures. Our results provide additional helpful insight into the transport mechanism in G/h-BN heterostructures. Published by AIP Publishing.