• 文献标题:   Phase-Modulation of Iron/Nickel Phosphides Nanocrystals "Armored" with Porous P-Doped Carbon and Anchored on P-Doped Graphene Nanohybrids for Enhanced Overall Water Splitting
  • 文献类型:   Article
  • 作  者:   WANG L, FAN JY, LIU Y, CHEN MY, LIN Y, BI HC, LIU BX, SHI NE, XU DD, BAO JC, HAN M
  • 作者关键词:   electrocatalytic overall water splitting, heteroatomsdoped carbon graphene doubleconfinement, iron/nickel phosphides nanocrystal, nanohybrid, phase modulation
  • 出版物名称:   ADVANCED FUNCTIONAL MATERIALS
  • ISSN:   1616-301X EI 1616-3028
  • 通讯作者地址:  
  • 被引频次:   54
  • DOI:   10.1002/adfm.202010912 EA MAY 2021
  • 出版年:   2021

▎ 摘  要

Transition metal phosphides (TMPs) nanostructures have emerged as important electroactive materials for energy storage and conversion. Nonetheless, the phase modulation of iron/nickel phosphides nanocrystals or related nanohybrids remains challenging, and their electrocatalytic overall water splitting (OWS) performances are not fully investigated. Here, the phase-controlled synthesis of iron/nickel phosphides nanocrystals armored with porous P-doped carbon (PC) and anchored on P-doped graphene (PG) nanohybrids, including FeP-Fe2P@PC/PG, FeP-(NixFe1-x)(2)P@PC/PG, (NixFe1-x)(2)P@PC/PG, and Ni2P@PC/PG, are realized by thermal conversion of predesigned supramolecular gels under Ar/H-2 atmosphere and tuning Fe/Ni ratio in gel precursors. Thanks to phase-modulation-induced increase of available catalytic active sites and optimization of surface/interface electronic structures, the resultant pure-phase (NixFe1-x)(2)P@PC/PG exhibits the highest electrocatalytic activity for both hydrogen and oxygen evolution in alkaline media. Remarkably, using it as a bifunctional catalyst, the fabricated (NixFe1-x)(2)P@PC/PG parallel to(NixFe1-x)(2)P@PC/PG electrolyzer needs exceptional low cell voltage (1.45 V) to reach 10 mA cm(-2) water-splitting current, outperforming its mixed phase and monometallic phosphides counterparts and recently reported bifunctional catalysts based devices, and Pt/C parallel to IrO2 electrolyzer. Also, such (NixFe1-x)(2)P@PC/PG parallel to(NixFe1-x)(2)P@PC/PG device manifests outstanding durability for OWS. This work may shed light on optimizing TMPs nanostructures by combining phase-modulation and heteroatoms-doped carbon double-confinement strategies, and accelerate their applications in OWS or other renewable energy options.