• 文献标题:   Impact of molecular components on performance of multilayer graphene-based infrared emissivity modulator
  • 文献类型:   Article
  • 作  者:   ZHANG YF, KE HB, LI JX, WENG ZK, LIN T, PENG WL, DAI MY, MU R, ZHANG XA
  • 作者关键词:  
  • 出版物名称:   APPLIED PHYSICS LETTERS
  • ISSN:   0003-6951 EI 1077-3118
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1063/5.0097144
  • 出版年:   2022

▎ 摘  要

Actively controlling the infrared emissivity of materials is critical for many applications, such as radiative cooling and thermal camouflage. Multilayer graphene (MLG) has shown great potential as a functional material with a tunable infrared emissivity. However, the spatial homogeneity in adjusting MLG's emissivity through ion intercalation is rather poor, which limits its practical applications. Here, we study how mixing various molecular components (e.g., ethanol) with ionic liquids affects the performance of MLG-based infrared emissivity modulators. The results indicate that introducing a moderate concentration of molecular components not only significantly improves spatial homogeneity in tuning emissivity but also enhances modulation depth, dynamic response, and the stability of the modulators. This is likely due to the increasing conductivity of the mixture and the improved wetting properties between the mixture and the separator, which leads to more effective charge transfer from ions in ionic liquids to carbons in graphene. The microscopic structure of MLG, revealed by Raman spectroscopy, confirms that the improvement in modulator performance is mostly due to homogeneous transportation of ions in the modulators. This not only sheds light on the underlying physics of the modulator but also greatly expands the options when selecting ionic liquids, thereby opening a new route for the modulator design. Published under an exclusive license by AIP Publishing.