• 文献标题:   Inkjet-printed electrochemically reduced graphene oxide microelectrode as a platform for HT-2 mycotoxin immunoenzymatic biosensing
  • 文献类型:   Article
  • 作  者:   KUDR J, ZHAO L, NGUYEN EP, AROLA H, NEVANEN TK, ADAM V, ZITKA O, MERKOCI A
  • 作者关键词:   2d material, antibody, biosensor, electrochemistry, graphene oxide
  • 出版物名称:   BIOSENSORS BIOELECTRONICS
  • ISSN:   0956-5663 EI 1873-4235
  • 通讯作者地址:   CSIC
  • 被引频次:   3
  • DOI:   10.1016/j.bios.2020.112109
  • 出版年:   2020

▎ 摘  要

The design and application of an inkjet-printed electrochemically reduced graphene oxide microelectrode for HT-2 mycotoxin immunoenzymatic biosensing is reported. A water-based graphene oxide ink was first formulated and single-drop line working microelectrodes were inkjet-printed onto poly(ethylene 2,6-naphthalate) substrates, with dimensions of 78 mu m in width and 30 nm in height after solvent evaporation. The printed graphene oxide microelectmdes were electrochemically reduced and characterized by Raman and X-ray photoelectron spectroscopies in addition to microscopies. Through optimization of the electrochemical reduction parameters, differential pulse voltammetry were performed to examine the sensing of 1-naphthol (1-N), where it was revealed that reduction times had significant effects on electrode performance. The developed microelectrodes were then used as an immunoenzymatic biosensor for the detection of HT-2 mycotoxin based on carbodiimide linking of the microelectmde surface and HT-2 toxin antigen binding fragment of antibody (anti-HT2 (10) Fab). The HT-2 toxin and anti-HT2 (10) Fab reaction was reported by anti-HT2 immune complex single-chain variable fragment of antibody fused with alkaline phosphatase (anti-IC-HT2 scFv-ALP) which is able to produce an electmactive reporter - 1-N. The biosensor showed detection limit of 1.6 ng . mL(-1) and a linear dynamic range of 6.3 - 100.0 ng . mL(-1) within a 5 min incubation with 1-naphthyl phosphate (1-NP) substrate.