• 文献标题:   Ionic-liquid-enhanced glucose sensing ability of non-enzymatic Au/graphene electrodes fabricated using supercritical CO2 fluid
  • 文献类型:   Article
  • 作  者:   WU JW, WANG CH, WANG YC, CHANG JK
  • 作者关键词:   graphene, ionic liquid, supercritical fluid, electrochemical sensor, au nanoparticle
  • 出版物名称:   BIOSENSORS BIOELECTRONICS
  • ISSN:   0956-5663
  • 通讯作者地址:   Natl Cent Univ
  • 被引频次:   53
  • DOI:   10.1016/j.bios.2013.02.021
  • 出版年:   2013

▎ 摘  要

Nano-sized Au particles (approximately 10 nm in diameter) are uniformly distributed on both graphene and carbon nanotubes (CNTs) using a supercritical CO2 fluid (SCCO2), which has gas-like diffusivity, low viscosity, and near-zero surface tension. Since the Au nanoparticles are highly dispersed and tightly anchored on the carbon supports, the obtained nanocomposites exhibit an improved electro-oxidation ability toward glucose as compared to that of the control electrodes prepared using a conventional chemical deposition process (without SCCO2). The Au/CNT electrode shows a higher glucose sensing current than that of the Au/graphene counterpart, which is due to the three-dimensional architecture interwoven by the CNTs creating a larger number of reaction sites. However, with ionic liquid (IL) incorporation, the detection sensitivity of the latter electrode significantly improved, becoming noticeably greater than that of the former. The synergistic interactions between Au/graphene and IL that lead to the superior electrochemical detection performance are demonstrated and discussed. (C) 2013 Elsevier B.V. All rights reserved.