▎ 摘 要
Tailoring the structure and properties of graphene fibers is an important step toward practical applications. Here, we report macroscopic, long graphene ribbons formed by combining electrostatic interaction and shear stress during the wet-spinning process. The graphene ribbons are flexible and can be woven into complex structures, and the ribbon morphology can be tailored by controlling the orientation of wrinkles to obtain elasticity within a modest strain. We demonstrate several potential applications of pure or Pt-graphene hybrid ribbons as elastic strain sensors, counter electrodes for dye-sensitized fiber solar cells with cell efficiencies reaching 4.69% under standard illumination and 6.41% with a back reflector, and woven fabric supercapacitor electrodes. Our method can directly fabricate meter-long graphene ribbons with controlled structure and high performance as both energy conversion and energy storage materials.