▎ 摘 要
The goal of this study was to create highly efficient dye-sensitized solar cells (DSSCs) using strontium doped zinc oxide-reduced graphene oxide (Sr-doped ZnO/rGO) nanocomposites. As photo-anodes of DSSCs, ZnO, ZnO/rGO (with weight percent rGO in composites: 0, 0.01, 0.1, 0.5, and 1 wt%) and Sr-doped ZnO/rGO (with Zn1-xSrxO nanoparticle stoichiometry: x = 0, 0.02, 0.04, 0.06 and 0.08) nanocomposites were designed and characterized. AFM, FESEM, XRD, EDS, XPS, PL, and FTIR analyses were used to investigate the morphology and structure properties of prepared nanocomposites. UV-vis spectroscopy and photo-electrochemical measurements were used to investigate the efficiency of prepared photo-anodes. The efficiency (eta) and short-circuit photocurrent density (JSC) of DSSCs based on Zn0.92Sr0.08O/rGO nanocomposite were 7.98 % and 18.4 mA cm(-2), respectively. The results showed that doping Sr on ZnO/rGO nanocomposites resulted in a wide bandgap energy and increased the values of eta, J(SC), IPCE, and photo-anode electron transportability. These findings suggest that Sr-doped ZnO/rGO nanocomposites can provide a novel approach for increasing photo-electrochemical activity in ZnO-based DSSCs.