• 文献标题:   Interband pi plasmon of graphene: strong small-size and field-enhancement effects
  • 文献类型:   Article
  • 作  者:   HU JL, ZENG HB, WANG C, LI ZG, KAN CX, LIU YW
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076 EI 1463-9084
  • 通讯作者地址:   Anhui Univ Technol
  • 被引频次:   14
  • DOI:   10.1039/c4cp02299h
  • 出版年:   2014

▎ 摘  要

The interband pi plasmon of graphene has energy corresponding to the ultraviolet (UV) wave band, and hence is promising for UV nanophotonics and nanooptoelectronics. However, its special size effect and electric field-enhancement effect have not been well understood. Here, we have investigated the far-field optical extinction and near-field enhancement features of the interband pi plasmon in a graphene nanodisk using discrete dipole approximation and finite-difference time-domain methods. Very interestingly, it has been found that the in-plane (transverse mode) optical extinction peak of monolayer graphene firstly significantly red shifts with increasing diameter, but then tends to a saturation value when the diameter is above 20 nm, showing a strong small-size-sensitive effect. Furthermore, the transverse mode optical extinction peak obviously blue shifts with increasing thickness when the thickness is relatively small. Significantly, the corresponding local electric field enhancement factor produced by the plasmon, which can be found to be as large as several tens, firstly increases with the increase of the size and then reaches a maximum value at only several nanometers in size. Such an ultrasmall-size-sensitive plasmon in the UV region endows graphene dots with new promising potential uses in ultrasmall photoelectric devices and nanoantennas, and in UV enhancers.