▎ 摘 要
The most popular way to produce graphene nowadays is chemical vapor deposition, where, surprisingly, H-2 gas is routinely supplied even though it is a byproduct itself. In this study, by identifying dominant growing pathways via multiscale simulations, we unambiguously reveal the central role hydrogen played in graphene growth. Hydrogen can saturate the edges of a growing graphene island to some extent, depending on the H-2 pressure. Although graphene etching by hydrogen has been observed in experiment, hydrogen saturation actually stabilizes graphene edges by reducing the detachment rates of carbon-containing species. Such a new picture well explains some puzzling experimental observations and is also instrumental in growth protocol optimization for two-dimensional atomic crystal van der Waals epitaxy.