• 文献标题:   Bi-enzyme functionalized electro-chemically reduced transparent graphene oxide platform for triglyceride detection
  • 文献类型:   Article
  • 作  者:   BHARDWAJ SK, CHAUHAN R, YADAV P, GHOSH S, MAHAPATRO AK, SINGH J, BASU T
  • 作者关键词:  
  • 出版物名称:   BIOMATERIALS SCIENCE
  • ISSN:   2047-4830 EI 2047-4849
  • 通讯作者地址:   Amity Univ
  • 被引频次:   9
  • DOI:   10.1039/c8bm01406j
  • 出版年:   2019

▎ 摘  要

Recently, increased attention has been drawn to application of graphene and its derivatives for construction of biosensors, since they can be used to rapidly detect the presence of bio-analytes. Present paper establishes the preparation of a unique transducer which relies on toluidine blue (TB), absorbed by electrochemically reduced graphene oxide (ERGO) transparent thin film onto the surface of the indium tin-oxide (ITO) glass electrode. The proposed TB/ERGO/ITO electrode shows excellent reversible electro-chemical properties. The novel platform has been explored to fabricate a triglyceride (TG) biosensor via co-immobilizing of lipase (LIP) and glycerol dehydrogenase (GDH) onto TB/ERGO/ITO electrode surface. The fabricated bioelectrode (LIP-GDH/TB/ERGO/ITO) directly oxidizes glycerol (produced by catalytic hydrolysis of tributyrin acting as a model TG) in the presence of GDH. The developed bioelectrode replaces unstable biological irreversible redox mediators NAD(+)/NADH, involved in the triglyceride breakdown reaction. NADH causes fouling on the bioelectrode surface in bi-enzymatic estimation of TG and reduces the shelf-life of biosensor. Electrochemical response studies carried out using cyclic voltammetry reveal that the fabricated electrode can detect tributyrin in the range of 50-400 mg dL(-1) with high sensitivity of 29 pA mg(-1) dL, low response time of 12 s, long-term stability and a low apparent Michaelis-Menten constant (Kappm) of 0.18 mM, indicating high enzyme affinity of LIP-GDH/TB/ERGO/ITO bioelectrode towards tributyrin. Furthermore, this modified bioelectrode has been explored for estimation of TG with negligible interference in human serum samples. The proposed bi-enzymatic bioelectrode for TG analysis offers an efficient and novel interface for application of graphene and its derivatives in the field of bioelectronic devices.