▎ 摘 要
We study the bonding and diffusion of Au in graphene vacancies using density-functional theory. Energetics show that Au adsorbs preferably to double vacancies, steadily in-plane with graphene. All diffusion barriers for the complex of Au in double vacancy are above 4 eV, whereas the barriers for larger vacancies are below 2 eV. Our results support the main results of a recent experiment [Y. Gan , Small 4, 587 (2008)] but suggest that the observed diffusion mechanism is not thermally activated but radiation enhanced.