▎ 摘 要
Single-atom transition metals embedded in nitrogen-doped graphene have emerged as promising electrocatalysts due to their high activity and low material cost. These materials have been shown to catalyze a variety of electrochemical reactions, but their active sites under reaction conditions remain poorly understood. Using first-principles density functional theory calculations, we develop a pH-dependent microkinetic model to evaluate the relative performance of transition metal catalysts embedded in fourfold N-substituted double carbon vacancies in graphene for the oxygen evolution reaction. We find that reaction pathways involving intermediates co-adsorbed on the metal site are preferred on all transition metals. These pathways lead to enhancements in catalytic activity and broaden the activity peak when compared with purely thermodynamics-based predictions. These findings demonstrate the importance of investigating reaction pathways on graphene-based catalysts and other twodimensional (2D) materials that involve metal active centers decorated by spectator intermediate species.