• 文献标题:   Electrically Inert h-BN/Bilayer Graphene Interface in All-Two-Dimensional Heterostructure Field Effect Transistors
  • 文献类型:   Article
  • 作  者:   UWANNO T, TANIGUCHI T, WATANABE K, NAGASHIO K
  • 作者关键词:   bilayer graphene, band gap, potential fluctuation, fet, heterostructure
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Univ Tokyo
  • 被引频次:   2
  • DOI:   10.1021/acsami.8b08959
  • 出版年:   2018

▎ 摘  要

Bilayer graphene field effect transistors (BLG-FETs), unlike conventional semiconductors, are greatly sensitive to potential fluctuations because of the charged impurities in high-k gate stacks because the potential difference between two layers induced by the external perpendicular electrical filed is the physical origin behind the band gap opening. The assembly of BLG with layered h-BN insulators into a van der Waals heterostructure has been widely recognized to achieve the superior electrical transport properties. However, the carrier response properties at the h-BN/BLG heterointerface, which control the device performance, have not yet been revealed because of the inevitably large parasitic capacitance. In this study, the significant reduction of potential fluctuations to similar to 1 meV is achieved in an all-two-dimensional heterostructure BLG-FET on a quartz substrate, which results in the suppression of the off-current to the measurement limit at a small band gap of similar to 90 meV at 20 K. By capacitance measurement, we demonstrate that the electron trap/detrap response at such heterointerface is suppressed to undetectable level in the measurement frequency range. The electrically inert van der Waals heterointerface paves the way for the realization of future BLG electronics applications.