▎ 摘 要
Considering that conventional hydrogels showed limited capabilities of controlling hydrophobic drug loading and releasing and graphene materials had interactions with hydrophobic drugs, we designed a graphene oxide (GO) composite hydrogel for drug delivery. But GO could not disperse well in monomer solution and agglomerated badly. Thus, water-soluble GO (GO-tripolymer) was first prepared under the stabilization of amphiphilic polymer, Pluronic F-127. The GO-tripolymer showed good solubility in PBS with the increase of polymer concentration. All GO-tripolymer solutions had the same UV absorption peaks as GO. Then, GO composite hydrogels (HNG hydrogels) were formed by the polymerization of hydroxyethyl methacrylate (HEMA), N-Vinyl pyrrolidone (NVP) and GO-tripolymer mixture. The introduction of GO-tripolymer had little effect on the gelation time and equilibrium swelling ratio of hydrogel. The freeze-drying hydrogel showed porous structure. The pore size decreased and the rough surface was detected with the increase of GO concentration. HNG hydrogel could load more puerarin and norfloxacin than conventional hydrogel (HN hydrogel). Moreover, HNG hydrogel could control puerarin and norfloxacin release more steadily than HN hydrogel. HNG exhibited low cytotoxicity.