• 文献标题:   Engineering Graphene Wrinkles for Large Enhancement of Interlaminar Friction Enabled Damping Capability
  • 文献类型:   Article
  • 作  者:   LU WJ, QIN FX, WANG YF, LUO Y, WANG H, SCARPA F, LI JX, SESANA R, CURAL F, PENG HX
  • 作者关键词:   wrinkled graphene, interfacial friction, coefficient of friction, sandwich structure, damping propertie
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Zhejiang Univ
  • 被引频次:   3
  • DOI:   10.1021/acsami.9b09393
  • 出版年:   2019

▎ 摘  要

Graphene nanoplates are hoped-for solid lubricants to reduce friction and energy dissipation in micro and nanoscale devices benefiting from their interface slips to reach an expected superlubricity. On the contrary, we propose here by introducing engineered wrinkles of graphene nanoplates to exploit and optimize the interfacial energy dissipation mechanisms between the nanoplates in graphene-based composites for enhanced vibration damping performance. Polyurethane (PU) beams with designed sandwich structures have been successfully fabricated to activate the interlaminar slips of wrinkled graphene-graphene, which significantly contribute to the dissipation of vibration energy. These engineered composite materials with extremely low graphene content (similar to 0.08 wt %) yield a significant increase in quasi-static and dynamic damping compared to the baseline PU beams (by 71% and 94%, respectively). Friction force images of wrinkled graphene oxide (GO) nanoplates detected via an atomic force microscope (AFM) indicate that wrinkles with large coefficients of friction (COFs) indeed play a dominant role in delaying slip occurrences. Reduction of GO further enhances the COFs of the interacting wrinkles by 7.8%, owing to the increased effective contact area and adhesive force. This work provides a new insight into how to design graphene-based composites with optimized damping properties from the microstructure perspective.