• 文献标题:   Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management
  • 文献类型:   Article
  • 作  者:   SONG N, JIAO DJ, CUI SQ, HOU XS, DING P, SHI LY
  • 作者关键词:   graphene nanosheet, nanofibrillated cellulose, layerbylayer assembly, layered structure, thermal conductivity, anisotropic propertie
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Shanghai Univ
  • 被引频次:   87
  • DOI:   10.1021/acsami.6b11979
  • 出版年:   2017

▎ 摘  要

An anisotropic thermally conductive film with tailorable microstructures and macroproperties is fabricated using a layer-by-layer (LbL) assembly of graphene oxide (GO) and nanofibrillated cellulose (NFC) on a flexible NFC substrate driven by hydrogen bonding interactions, followed by chemical reduction process. The resulting NFC/reduced graphene oxide (RGO) hybrid film reveals an orderly hierarchical structure in which the RGO nanosheets exhibit a high degree of orientation along the in-plane direction. The assembly cycles dramatically increase the in-plane thermal conductivity (lambda(X)) of the hybrid film to 12.6 W.m(-l).K-1, while the cross-plane thermal conductivity (lambda(Z)) shows a lower value of 0.042 W.m(-l).K-1 in the hybrid film with 40 assembly cycles. The thermal conductivity anisotropy reaches up to lambda(x)/lambda(z) = 279, which is substantially larger than that of similar polymeric nanocomposites, indicating that the LbL assembly on a flexible NFC substrate is an efficient technique for the preparation of polymeric nanocomposites with improved heat conducting property. Moreover, the layered hybrid film composed of 1D NFC and 2D RGO exhibits synergetic mechnical properties with outstanding flexibility and a high tensile strength (107 MPa). The combination of anisotropic thermal conductivity and superior mechanical performance may facilitate the applications in thermal management.