• 文献标题:   Ultra-low-edge-defect graphene nanoribbons patterned by neutral beam
  • 文献类型:   Article
  • 作  者:   HUANG CH, SU CY, OKADA T, LI LJ, HO KI, LI PW, CHEN IH, CHOU C, LAI CS, SAMUKAWA S
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Chang Gung Univ
  • 被引频次:   25
  • DOI:   10.1016/j.carbon.2013.04.099
  • 出版年:   2013

▎ 摘  要

Top-down process, comprising lithography and plasma etching is widely used in very-large-scale integration due to its scalability, has the greatest potential to fabricate graphene nanoribbon based nanoelectronic devices for large-scale intergraded circuits. However, conventional plasma etching inevitably introduces plenty of damage or defects to the etched materials, which drastically degrades the performance of nano materials. In this study, extremely low-damage neutral beam etching (NBE) is applied to fabricate ultra-low-defect graphene nanoribbon array (GNR). The ultra-low-edge-defect GNRs are fabricated by E-beam lithography followed by oxygen NBE from large-scale chemical-vapor-deposition-grown graphene. AFM images clearly shows the GNRs patterned by NBE and E-beam lithography, and Raman spectroscopy exhibits extremely low I-D/I-G of GNRs, which indicate that high-quality GNRs can be successfully fabricated by neutral beam. We also demonstrated bottom-gated field-effect transistor with the high-quality GNR and observed a high carrier mobility (>200 cm(2) V-1 s(-1)) at room temperature. (C) 2013 Elsevier Ltd. All rights reserved.