• 文献标题:   Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms
  • 文献类型:   Article
  • 作  者:   HE JZ, WANG DJ, FANG H, FU QL, ZHOU DM
  • 作者关键词:   graphene oxide nanoparticle, biofilm, transport, porous media, computed tomography, modeling
  • 出版物名称:   CHEMOSPHERE
  • ISSN:   0045-6535 EI 1879-1298
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   12
  • DOI:   10.1016/j.chemosphere.2016.11.040
  • 出版年:   2017

▎ 摘  要

Increasing production and use of graphene oxide nanoparticles (GONPs) boost their wide dissemination in the subsurface environments where biofilms occur ubiquitously, representative of the physical and chemical heterogeneities. This study aimed at investigating the influence of Gram-positive Bacillus subtilis (BS) and Gram-negative Pseudomonas putida (PP) biofilms on the transport of GONPs under different ionic strengths (0.1, 0.5, and 1.0 mM CaCl2) at neutral pH 7.2 in water-saturated porous media. Particularly, the X-ray micro-computed tomography was used to quantitatively characterize the pore structures of sand columns in the presence and absence of biofilms. Our results indicated that the presence of biofilms reduced the porosity and narrowed down the pore sizes of packed columns. Transport experiments in biofilm-coated sand showed that biofilms, irrespective of bacterial species, significantly inhibited the mobility of GONPs compared to that in cleaned sand. This could be due to the Ca2+ complexation, increased surface roughness and charge heterogeneities of collectors, and particularly enhanced physical straining caused by biofilms. The two-site kinetic retention model-fitted value of maximum solid-phase concentration (S-max2) for GONPs was higher for biofilm-coated sand than for cleaned sand, demonstrating that biofilms act as favorable sites for GONPs retention. Our findings presented herein are important to deepen our current understanding on the nature of particle-collector interactions. (C) 2016 Elsevier Ltd. All rights reserved.