• 文献标题:   Constitutive modeling of some 2D crystals: Graphene, hexagonal BN, MoS2, WSe2 and NbSe2
  • 文献类型:   Article
  • 作  者:   SFYRIS D, SFYRIS GI, GALIOTIS C
  • 作者关键词:   graphene, hexagonal bn, mos2, wse2, nbse2, nonlinear elasticity
  • 出版物名称:   INTERNATIONAL JOURNAL OF SOLIDS STRUCTURES
  • ISSN:   0020-7683 EI 1879-2146
  • 通讯作者地址:   FORTH ICE HT
  • 被引频次:   15
  • DOI:   10.1016/j.ijsolstr.2015.03.030
  • 出版年:   2015

▎ 摘  要

We lay down a nonlinear elastic constitutive framework for the modeling of some 2D crystals of current interest. The 2D crystals we treat are graphene, hexagonal boron nitride and some metal dichalcogenides: molybdenium disulfide (MoS2), tungsten selenium (WSe2), and niobium diselenide (NbSe2). We first find their arithmetic symmetries by using the theory of monoatomic and diatomic 2-nets. Then, by confinement to weak transformation neighborhoods and by applying the Cauchy Born rule we are able to use the symmetries continuum mechanics utilizes: geometric symmetries. We give the complete and irreducible representation for energies depending on an in-plane measure, the curvature tensor and the shift vector. This is done for the symmetry hierarchies that describe how symmetry changes at the continuum level: C-6v -> C-2v -> C-1 for monoatomic 2-nets, and C-6v -> C-1v -> C-1 for diatomic two nets. We stress that we do not take into account how energy behaves at the transition regime. Having these energies at hand we are able to evaluate stresses and couple stresses for each symmetry regime. These quantities participate to the field equations: the momentum equation, the moment of momentum equation and the equation ruling the shift vector. By making specific assumption for the loading histories that correspond to in-plane biaxial tension/compression as well as in-plane simple shear, we obtain necessary expressions for the shift vector components in order all field equations to be satisfied. When the algebraic equations ruling the shift vector render infinite solutions, we use the Cauchy Kowalevski theorem-when it applies-for the momentum equation viewed as a quasilinear system in order to single out the unique solution. (C) 2015 Elsevier Ltd. All rights reserved.